

CKDGen Consortium: Round 4 Analysis Plan July of 2016

The purpose of these analyses is to perform trans-ethnic GWAS meta-analyses of densely imputed genotype data to uncover novel loci associated with kidney function related traits and kidney disease.

If the collection of data in your study does not allow for carrying out one or more analyses as outlined in this document, please contact us before proceeding.

Outline of the analysis plan:

1.	GENOTYPES AND IMPUTATION	2
2.	PHENOTYPE GENERATION	2
3.	RUNNING OF GWAS	6
	3.1 GENERAL INSTRUCTIONS	6
	3.2 GWAS	6
	3.3 X CHROMOSOME ANALYSES	8
4.	CONTENT AND FORMATTING OF GWAS OUTPUT FOR STUDIES NOT USING EPACTS	9
5.	UPLOAD INSTRUCTIONS AND TIMELINE	10
AP	PENDIX	

Contacts

For any issue related to the CKDGen Consortium and analyses, please contact Anna Köttgen (anna.koettgen@uniklinik-freiburg.de, akottge1@jhu.edu) and/or Cristian Pattaro (cristian.pattaro@eurac.edu). For questions on the following issues, please include the following person(s):

- Prospective phenotypes: *Carsten Böger* (<u>Carsten.Boeger@ukr.de</u>);
- Phenotype creation software: Matthias Wuttke (<u>matthias.wuttke@uniklinik-freiburg.de</u>) and Mathias Gorski (<u>Mathias.Gorski@klinik.uni-regensburg.de</u>)
- GWAS and analytical issues: Alexander Teumer (<u>ateumer@uni-greifswald.de</u>)
- EPACTS analysis pipeline: Christian Fuchsberger (christian.fuchsberger@eurac.edu)

Please upload all result files by September 30th, 2016.

1. Genotypes and imputation

We are requesting data using one of the following haplotype reference panels for imputation: Haplotype Reference Consortium (HRC) version 1.1 (preferred for studies of European ancestry individuals) or 1000G phase 3 v5 ALL (if HRC not available or for studies of non-European ancestry). If neither of these panels is available, imputation using the 1000G phase 1 v3 ALL haplotype reference panel or later is acceptable. Imputation should be carried out excluding monomorphic sites and singletons, and including chromosomes 1-22 and X. Data are requested on the forward strand and using NCBI b37 (hg19) coordinates.

If your study has such data already available, please move on to the next section.

If you need to impute your data, you can find details related to data quality control, lift over, strand alignment, helpful links to imputation programs, reference panels and imputation settings in the **Appendix**.

2. Phenotype generation

Along with this analysis plan, we are **distributing** a **script** that will **generate the phenotypes** to be used as the outcome for GWAS (download link in section 2.2). The following steps need to be carried out to generate all GWAS-ready phenotypes:

- Section 2.1: create an input file <input_filename>.txt that contains all necessary variables from your study Table 1 lists these variables and their required names.
- Section 2.2: download the phenotype generation script and edit the parameter file.
- Section 2.3: run the phenotype generation script to obtain analysis-ready phenotypes.

2.1 Set up the file <filename>.txt that is the input for the phenotype generation script

- For all subjects with imputed genotypes, generate or obtain all variables as described in the "definition" column of **Table 1**. We realize that you may not have all of the biomarkers: provide those that you have.
- Do not transform phenotypes; the provided script will do so automatically.
- Name the variables exactly as in the "variable name" column of Table 1.
- Use <u>tab</u> as the column <u>separator</u> in the input file.
- Replace <filename>.txt with a name for your input file
- If you have a phenotype measured at more than one study visit, use the one with the largest sample size.

- Code missing values as NA, unless indicated differently in **Table 1** (see column "Definition").
- The script will also run if columns for non-available phenotypes are missing.
- Age: age should always be in years; for any age variable, do not round but use greater precision if available.
- **Prospective studies with more than 2 time-points**: please consult with us to define a baseline and a follow-up point for creating the longitudinal traits.

Variable description	Variable name that must be used in input	Definition
	THE	
Participant identifier		Use your unique participant identifier
serum creatinine measurement	age_screa	with prospective data, this refers to baseline visit.
Age at time of urine biomarker measurements	age_urine	Age in years at the visit at which urinary biomarkers were measured. If the time point it the same as for serum creatinine, leave empty or copy/paste the same values.
Age at time of BUN or urea measurement	age_bun_urea	Age in years at the visit at which serum urea/BUN (whichever is available) was measured. If the time point is the same as for serum creatinine, leave empty or copy/paste the same values.
Age at time of serum urate measurement	age_uric_acid	Age in years at the visit at which serum uric acid (a.k.a. urate) was measured. If the time point it the same as for serum creatinine, leave empty or copy/paste the same values.
Male sex	male	Code: 1 = male, 0 = female
African ancestry	black	Code : 1 = African or African American ancestry, 0 = any other ancestry
Blood creatinine	screa	As measured, possible units: mg/dl or μ mol/l (units will be specified in the parameter file, see section 2.2)
Urinary creatinine	ucrea	As measured, possible units: mg/dl or μ mol/l (units will be specified in the parameter file, see section 2.2)
Urinary albumin	ualb	use/convert to unit mg/l
		 Handling of values below the limit of detection (LOD) of the albumin assay: Do not set them to missing.
		• If numerical values below LOD are available, leave them as they are, but specify the assay LOD in the script parameter file as described in the next section.
		 If they are reported as "<lod" "<"="" "<3"),="" (e.g.:="" drop="" leave<br="" operator,="" the="">numerical value of the LOD (e.g.: 3), and specify the assay LOD in the script parameter file.</lod">
		 Ensure that the variable has only numeric values.
Blood urea	urea	use/convert to unit mmol/l. Your study will likely only have either blood urea OR blood urea nitrogen (BUN). Please use whichever is available.
Blood urea nitrogen (BUN)	bun	use/ convert to unit mg/dl . Your study will likely only have either blood urea OR BUN. Please use whichever is available.
Blood urate (i.e. uric acid)	uric_acid	As measured, possible units: mg/dl or μ mol/l (units will be specified in the parameter file, see section 2.2)

Table 1: Description, names and definition of required variables for the input file.

Diabetes at the time diabetes screa Code: 1 = diabetes; 0 = no diabetes; NA = missing information		
of serum creatinine	-	Preferred definition: fasting plasma glucose ≥126 mg/dl (7.0 mmol/L) OR
measurement		treatment for diabetes.
		If fasting glucose is not available: non-fasting glucose ≥200 mg/dl (11.0
		mmol/L) OR treatment for diabetes
		If glucose is not available: self-reported diabetes status
Diabetes at the time	diabetes_urine	Defined as above, but use time point of urinary biomarkers. If the time point
of urinary biomarker		it the same as for serum creatinine, leave empty or copy/paste the same
measurement		values.
Hypertension at the	htn	Code : 1 = hypertension; 0 = no hypertension; NA = missing information
time of serum		<u>Preferred definition</u> : systolic BP \ge 140 mm Hg OR diastolic BP \ge 90 mm Hg OR
creatinine		treatment for hypertension
measurement		If measured BP not available: self-reported hypertension
Gout	gout	Code : 1 = gout; 0 = no gout or missing information; note : set missing to 0!
		Preferred definition: self-reported gout
		If self-report not available: gout defined based on ICD-coding (ICD-9 code
		274.0, 274.1, 274.8, or 274.9; ICD-10 M10.0, M.10.3, M.10.4, M10.9) from
		hospital discharge records and/or death certificates.
		If ICD codes not available: intake of gout specific medication within the last
		month: allopurinol, febuxostat, probenecid, benzbromarone, or colchicine
Blood creatinine at	screa_fu	Only for prospective studies: as measured at the follow-up visit for serum
follow up		creatinine, must be in the same unit as blood creatinine at baseline
Age at time of	age_fu	Only for prospective studies: age in years at the follow-up visit for serum
follow-up creatinine		creatinine
measurement		

2.2 Download the phenotype generation script and edit the parameter file

Please start by **downloading the phenotype generation script** from

https://github.com/genepi-freiburg/ckdgen-pheno/

On the page, click on the green "clone or download" button, then select "download ZIP".

To successfully run the phenotype generation script, the following additional information is needed:

- Assay used for measurement of blood creatinine (Jaffe vs. enzymatic). For studies with prospective data: you need this information for baseline and follow-up.
- Year of blood creatinine measurement. For studies with prospective data: you need this information for baseline and follow-up.
- The lower **limit of detection** (LOD) for the assay used to measure urinary albumin (see **Table 1** for how to code values < LOD in the urinary albumin field)

With this information, please **edit** the parameter file "params-template":

• Rename the parameters file to include your study name, e.g. "cp params-template params-gckd.txt"

• Edit the parameter file by replacing the example values with your study's information (detailed instructions are found in the params-template file).

2.3 Running the phenotype generation script

Please read the **README** file distributed with the script. With the files generated as outlined in sections 2.1 and 2.2, run the phenotype generation script on the command line, passing the parameters file.

Example:

./ckdgen-pheno-prep.sh params-gckd.txt

Windows or Mac versus Unix environment: to avoid problems with line breaks when you run the script in a Unix environment, use the following commands to convert the files prior to running the script:

- "dos2unix <input_filename.txt>" for input files generated under Windows
- "mac2unix <input_filename.txt>" for input files generated using MAC

The script will calculate analysis-ready phenotypes for use in the GWAS. Output is written both to the screen and to a log file. Please **examine** the **output carefully** (i.e. the .log and the .errors.csv files). If there are problems, try to adjust the parameters in the parameters file or the data in your input file according to the error messages.

Note that if your study only has one stratum of variables for which stratified phenotypes are generated, this stratum will be named "*_overall" by the script (e.g., if all participants are male, you will only have "uric_acid_overall" in the output.

If you need assistance, do not hesitate to contact us.

Upload both **summary output files** (**both .summary.pdf and .summary.txt**, e.g. ckdgen-pheno-SHIP-1-201606210921.summary.pdf and ckdgen-pheno-SHIP-1-201606210921.summary.txt) generated by the script along with the GWAS results data as detailed in **section 5** (do not upload the .phenotype.txt file).

3. Running of GWAS

3.1 General instructions

- Please contribute whichever traits listed in **Table 2** are available from your study.
- Minimum sample size for binary phenotypes: for a given stratum, at least 100 cases and 100 controls are required. Do not run GWAS if your sample size is smaller.
- GWAS should be run assuming an additive genetic model.
- Run GWAS by chromosome and upload one file per chromosome.
- No GC correction: do not apply genomic control correction to GWAS results.
- **Multi-ethnic studies**: perform ancestry-specific analyses, **do not combine ethnicities**. In case of difficult dissection of the ethnic groups, please get in touch with us.
- X chromosome: perform sex-stratified GWAS for the X chromosome. Male genotypes should be coded 0/2 in the non-pseudoautosomal region of the X (see Appendix for details on the genotype imputation of this region).

3.2 GWAS

All GWAS will be based on the two following models:

Continuous phenotypes: analysis-ready phenotype^{*} ~ SNP + study-specific covariates^{**} + PCs[#]

Binary phenotypes: analysis-ready phenotype^{*} ~ SNP + age and/or sex^{##} + study-specific covariates^{**} + PCs[#]

where:

*Analysis-ready phenotype: Use the output variables generated by the script (section 2.3) **Study-specific covariates reflecting characteristics of the study design, e.g., different recruitment centers.

***PCs**: genetic principal components; each study should account for population stratification or family/pedigree substructure using the most appropriate method such as PC adjustment or linear mixed models based on kinship coefficients, respectively.

##Age and/or sex: as specified for each trait in **Table 2**.

Tuble 21 over the work and requested of this (not an prenotypes may be available in your study)				
Outcome: analysis- ready phenotype (output from script)	Description of outcome	Regression model	Covariates to be included in the GWAS	
eGFR_overall	Age- and sex-adjusted residuals of	linear	If needed: study-specific covariates	
	ln(eGFR)		(e.g., study site, PCs, etc.)	
eGFR_nonDM	Age- and sex-adjusted residuals of	linear	If needed: study-specific covariates	
	In(eGFR) among those without diabetes		(e.g., study site, PCs, etc.)	
eGFR_DM	Age- and sex-adjusted residuals of	linear	If needed: study-specific covariates	
	In(eGFR) among those with diabetes		(e.g., study site, PCs, etc.)	
creatinine_overall	Age- and sex-adjusted residuals of	linear	If needed: study-specific covariates	
	In(crea)		(e.g., study site, PCs, etc.)	

Table 2: Overview of all requested GWAS (not all phenotypes may be available in your study)

UACR overall	Inverse normal transformed age- and	linear	If needed: study-specific covariates
-	sex-adjusted residuals of In(UACR)		(e.g., study site, PCs, etc.)
UACR DM	Inverse normal transformed age- and	linear	If needed: study-specific covariates
_	sex-adjusted residuals of In(UACR)		(e.g., study site, PCs, etc.)
	among those with diabetes		
UACR nonDM	Inverse normal transformed age- and	linear	If needed: study-specific covariates
-	sex-adjusted residuals of In(UACR)		(e.g., study site, PCs, etc.)
	among those without diabetes		
bun overall	Age- and sex-adjusted residuals of	linear	If needed: study-specific covariates
_	In(bun) [calculated from urea]		(e.g., study site, PCs, etc.)
uric acid overall	Age- and sex-adjusted residuals of uric	linear	If needed: study-specific covariates
	acid		(e.g., study site, PCs, etc.)
uric acid men	Age-adjusted residuals of uric acid	linear	If needed: study-specific covariates
	among men		(e.g., study site,PCs, etc.)
uric acid women	Age-adjusted residuals of uric acid	linear	If needed: study-specific covariates
	among women		(e.g., study site, PCs, etc.)
CKD overall	CKD as generated from script	logistic	age, sex; if needed: study-specific
_		0	covariates (e.g., study site, PCs, etc.)
CKD DM	CKD as generated from script among	logistic	age, sex; if needed: study-specific
_	those with diabetes	0	covariates (e.g., study site, PCs, etc.)
CKD nonDM	CKD as generated from script among	logistic	age, sex; if needed: study-specific
_	those without diabetes	0	covariates (e.g., study site, PCs, etc.)
MA overall	MA as generated from script	logistic	age, sex; if needed: study-specific
-		0	covariates (e.g., study site, PCs, etc.)
MA DM	MA as generated from script among	logistic	age, sex; if needed: study-specific
-	those with diabetes	0	covariates (e.g., study site, PCs, etc.)
MA nonDM	MA as generated from script among	logistic	age, sex; if needed: study-specific
-	those without diabetes	0	covariates (e.g., study site, PCs, etc.)
Gout_overall	Gout as generated from script	logistic	age, sex; if needed: study-specific
_			covariates (e.g., study site, PCs, etc.)
Gout_men	Gout as generated from script among	logistic	age; if needed: study-specific
	men	_	covariates (e.g., study site, PCs, etc.)
Gout_women	Gout as generated from script among	logistic	age; if needed: study-specific
	women		covariates (e.g., study site, PCs, etc.)
eGFRdecline	Only for studies with prospective data	linear	If needed: study-specific covariates
	Age-, sex- and baseline eGFR-adjusted		(e.g., study site, PCs, etc.)
	residuals of eGFRdecline		
eGFRdecline_DM	Only for studies with prospective data	linear	If needed: study-specific covariates
	Age-, sex- and baseline eGFR-adjusted		(e.g., study site, PCs, etc.)
	residuals of eGFRdecline in diabetes		
eGFRdecline_nonDM	Only for studies with prospective data	linear	If needed: study-specific covariates
	Age-, sex- and baseline eGFR-adjusted		(e.g., study site, PCs, etc.)
	residuals of eGFRdecline in non-diabetes		
eGFRdecline_CKD	Only for studies with prospective data	linear	If needed: study-specific covariates
	Age-, sex- and baseline eGFR-adjusted		(e.g., study site, PCs, etc.)
	residuals of eGFRdecline in CKD		
Rapid3	Only for studies with prospective data	logistic	age, sex, baseline eGFR; if needed:
	Rapid3 as generated from script		study-specific covariates (e.g., study
			site, PCs, etc.)

	0011001110m	1	
Rapid3_DM	Only for studies with prospective data	logistic	age, sex, baseline eGFR; if needed:
	Rapid3 as generated from script among		study-specific covariates (e.g., study
	those with diabetes		site, PCs, etc.)
Rapid3_ nonDM	Only for studies with prospective data	logistic	age, sex, baseline eGFR; if needed:
	Rapid3 as generated from script among		study-specific covariates (e.g., study
	those without diabetes		site, PCs, etc.)
iCKD25	Only for studies with prospective data	logistic	age, sex, baseline eGFR; if needed:
	Incident CKD as generated from script		study-specific covariates (e.g., study
			site, PCs, etc.)

GWAS software options:

A) [recommended] EPACTS pipeline

We recommend that all studies use the EPACTS pipeline. The full pipeline, adapted to the CKDGen needs and including specifications of the options, is reported here:

https://ckdgen.eurac.edu/mediawiki/index.php/CKDGen_Round_4_EPACTS_analysis_plan_

By following this pipeline, results will be automatically ready for upload, with no additional formatting required. You can skip to section 5 for result upload.

B) SNPtest v2 or later

If you use SNPtest v2 or later, specify the "-frequentist 1", "-method expected", "call_thresh 0.0001" and "–use_raw_phenotypes" options for analyses of the autosomes and the X chromosome. **Results must be formatted as described in Section 4**.

C) **Other** pipelines

If you prefer using your own pipeline, this is fine. In this case, **results must be formatted as described in Section 4**.

3.3 X chromosome analyses

Only for the phenotypes listed in **Table 3**, run the analyses on chromosome X **for males and females separately**, using one of the analysis pipelines listed in section 3.2. We recommend using the same software for autosome and X chromosome analyses. For imputation of X chromosome genotypes, see **Appendix**.

Outcome: analysis- ready phenotype (output from script)	Covariates to be included in the GWAS
eGFR_overall	If needed: study-specific covariates (e.g., study site, PCs, etc.)
creatinine_overall	If needed: study-specific covariates (e.g., study site, PCs, etc.)
UACR_overall	If needed: study-specific covariates (e.g., study site, PCs, etc.)
bun_overall	If needed: study-specific covariates (e.g., study site, PCs, etc.)
uric_acid_overall	If needed: study-specific covariates (e.g., study site, PCs, etc.)
CKD_overall	age; if needed: study-specific covariates (e.g., study site, PCs, etc.)
MA_overall	age; if needed: study-specific covariates (e.g., study site, PCs, etc.)
Gout_overall	age; if needed: study-specific covariates (e.g., study site, PCs, etc.)
eGFRdecline	Only for studies with prospective data
	If needed: study-specific covariates (e.g., study site, PCs, etc.)
Rapid3	Only for studies with prospective data
	age, baseline eGFR; if needed: study-specific covariates (e.g., study site, PCs, etc.)
iCKD25	Only for studies with prospective data
	age, baseline eGFR; if needed: study-specific covariates (e.g., study site, PCs, etc.)

Table 3: Overview of reque	sted GWAS from the X chromosome
----------------------------	---------------------------------

4. Content and formatting of GWAS output for studies not using EPACTS

Studies using the **EPACTS** association **pipeline** can **skip to section 5**. All other studies:

- a. General instructions for the GWAS summary statistics files for submission
 - Exclude variants with invalid associations (missing beta or missing SE).
 - Do not pre-filter on allele frequency or imputation quality.
 - If your study automatically pre-filters on these, please let us know.

b. Formatting of the GWAS summary statistics files

- Submitted summary files should be **tab-delimited**.
- Missing information should be coded "NA".
- Include one row per variant (SNPs or indels).
- Include columns for **chr and pos (b37)**. <u>Because of different imputation reference panels</u> <u>across cohorts, this **is crucial information** for variant harmonization.</u>
- Include all columns shown in Table 4 and use the name exactly as in the "column name" column.

Table 4: Column	headers for GWAS sum	mary files for stu	udies not using th	e FPACTS pipeline
		11101 y 11103 101 300	Juico not donig ti	

Column name	Description
REID	Variant identifier. Use the variant identifier exactly as it is represented in your results.
עונא	We will convert these to a common ID during data cleaning and meta-analysis.
chr	Mandatory. Chromosome number. Use "X" for chromosome X.
position	Mandatory. Physical position for the reference sequence (only build 37/hg19)
	Mandatory. Coded allele, also called modeled or effect allele (in example of A/G SNP in
coded_all	which AA=0, AG=1 and GG=2, the coded allele is G). Use A/C/G/T or the applicable indel
	allele coding as present in your results data (do not recode alleles to R/D/I).
noncoded all	Mandatory. The alternate allele. Use A/C/G/T or the applicable indel allele coding as
noncoueu_aii	present in your results data (do not recode alleles to R/D/I).
hota	Beta estimate from genotype-phenotype association, at least 5 decimal places, variants
Dela	with missing beta estimates should be excluded.
CE	Standard error of beta estimate, to at least 5 decimal places, variants with missing SE
SE	should be excluded.
Pvalue	p-value of test statistic, "NA" if not available
AF_coded_all	Allele frequency of the coded allele, "NA" if not available
n_total	Total sample with phenotype and genotype for variant
used_for_imp	1/0 coding; 1=used for imputation, 0=not used for imputation
	Imputation quality: take r2 values if minimac was used for imputation, info values if
	IMPUTE2 was used

5. Upload instructions and timeline

a. What to upload

- i. Studies using EPACTS
 - All *epacts.gz files (GWAS results for each chromosome); use naming convention indicated in Table 5.
 - The two .summary.pdf and .summary.txt files from the phenotype generation script; *e.g.: ckdgen-pheno-SHIP-0-201606210921.summary.txt, ckdgen-pheno-SHIP-0-201606210921.summary.pdf*; do not upload individual level data files.
 - The **.info file** generated during imputation. Please combine information for the different chunks of all chromosomes into one file.

ii. Studies not using EPACTS

- Formatted **GWAS results files**; use naming convention indicated in **Table 5**.
- The **two**.summary.pdf and .summary.txt files from the phenotype generation script; *e.g.: ckdgen-pheno-SHIP-0-201606210921.summary.txt, ckdgen-pheno-SHIP-0-201606210921.summary.pdf*; do not upload individual level data files.

b. Naming convention of GWAS and other files

Please name all files to be uploaded (GWAS results/GWAS summary statistics and imputation quality files) as follows:

A_B_C_D_E_F.<original_file_extension>.

where

Table 5: Instructions for file naming convention.

А	Your study's name
В	Ethnicity; use EA for European ancestry, AA for African American, AFR for African, EA for
	East Asian, SA for South Asian, HIS for Hispanic, IA for Indian ancestry or as applicable
С	The analyzed study trait, e.g. "eGFR_overall"
D	Imputation reference panel, use "1KGPph1v3", "1KGPph3v5" or "HRC", as applicable
Е	Chromosome, use "chrXX" for autosomes (e.g.: "chr03") and "chrX_F" and "chrX_M" for X
	chromosome analyses on females and males, respectively.
F	Date, use YYYYMMDD

Ex: ARIC_AA_eGFRoverall_1KGPph3v5_chr20_20160530.txt, ARIC_AA_1KGPph3v5_20160530.info Output files from the phenotype generation script does not need to be renamed.

c. Where to upload

Upload all output to:

https://ckdgen.eurac.edu/upload/

User name: ckdgenR4 Password: ExcitingScience!

Notice: file size limit is 4GB.

d. Timeline

Please upload all files by September 30th, 2016.

When you finish uploading, please inform us with an email to <u>ckdgenconsortium@gmail.com</u>, indicating your study and your name.

e. Cohort-specific information: funding, acknowledgements

Complete cohort-specific information sheet (<u>https://docs.google.com/spreadsheets/d/11pGt-</u> <u>LvGVT6OLShsbtcET8gRBRtgbnIUbK-XEBbqMw/edit?usp=sharing</u>), including

- i. authors and affiliations
- ii. acknowledgements
- iii. study information
- iv. genotyping information
- v. author contributions
- vi. conflict of interest

Thank you very much for your participation in the CKDGen Consortium analyses!

Appendix

Additional information regarding genotyping and imputation

1.1 Imputation Reference Haplotype Panels

The preferred haplotype reference panel for imputation is the Haplotype Reference Consortium (HRC) panel for European ancestry studies, and the 1000G phase 3 v5 ALL panel (excluding monomorphic sites and singletons, including chromosomes 1-22, and X) for studies of non-European ancestry, or if HRC is not available. We will also accept other densely imputed data, when the reference haplotype panel was a 1000G phase 1 v3 ALL panel or later.

1.2 Sample and Variant Quality Control

Each study is responsible for their own QC using appropriate filters. Standard procedures include removing samples of low genotyping call rate, mismatch between genotypic and phenotypic sex, excess heterozygosity, first-degree relatives for non-family based studies and outlying genetic ancestry. Prior to imputation, please ensure usage of high-quality variants by filtering the SNPs on your existing exclusion criteria for call rate, minor allele frequency and HWE p-value.

1.3 Lift over of genotype data to NCBI b37 (hg19)

To match current releases of the reference haplotype panels, please lift over your genotype data so that they have b37 coordinates before starting imputation. You can find information on how to perform the liftover here http://genome.sph.umich.edu/wiki/LiftOver.

1.4 Align all SNPs to the positive (+) strand

To match the imputation reference panels, all SNPs need to be expressed relative to the + strand of the human reference genome sequence before imputation. Useful resources:

• Wrayner files for strand flipping: http://www.well.ox.ac.uk/~wrayner/strand/index.html

- Genotype Harmonizer: <u>https://github.com/molgenis/systemsgenetics/wiki/Genotype-</u> <u>Harmonizer</u>
- checkVCF: <u>https://github.com/zhanxw/checkVCF</u>

1.5 Resources for imputation

Please follow one of these protocols for two-step imputation and use standard settings:

1000 Genomes imputation phase 3 v5 ALL, recommended for studies of non-European ancestry or if HRC is not available:

- IMPUTE2: http://genome.sph.umich.edu/wiki/Impute2: GIANT 1000 Genomes Imputation Cookbook
- Minimac: <u>http://genome.sph.umich.edu/wiki/Minimac: GIANT 1000 Genomes Imputation Cookbook</u>
- Minimac3: <u>http://genome.sph.umich.edu/wiki/Minimac3_Imputation_Cookbook</u>

HRC (Haplotype Reference Consortium) version 1.1 (please, contact us if you are using previous versions), recommended for European-ancestry studies, using the available imputation servers:

- Michigan Imputation Server: <u>https://imputationserver.sph.umich.edu/</u> (Eagle/minimac3)
- Sanger imputation service: <u>https://imputation.sanger.ac.uk/</u> (Eagle/PBWT)

Recommended options (default): Reference Panel: HRC r1.1 2016; Phasing: Eagle (phased output); Population (for the allele frequency check): EUR; Mode: Quality Control & Imputation

1.6 Use pre-generated reference haplotype panels

The following 1000G Phase 3 version 5 pre-formatted reference haplotype panels are recommended for genotype imputation:

- Impute2: <u>https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html</u>
- Minimac3: ftp://share.sph.umich.edu/minimac3/G1K_P3_M3VCF_FILES_WITH_ESTIMATES.tar.gz

1.7 X chromosome imputation

See instructions in the Impute2, minimac and HRC cookbooks, section 1.5 above. Males should be coded 0/2 on the non-pseudoautosomal region of the X. The non-pseudoautosomal region spans between 2,699,521 and 154,931,043 (build: hg19) base-pairs (http://genome.sph.umich.edu/wiki/Minimac#X Chromosome Imputation).

1.8 Genotype imputation by chunks

Imputation by genome chunks is standard in IMPUTE (see the software website for more details). As there are considerable time savings, imputation by genome chunks should also be used for Minimac imputation (2500 marker chunks, with 500 marker overhang on each side of the chunk). See section on "Further Time Savings" in Minimac cookbook.